
OpenGFS

Ben Cahill

Ben.m.cahill@intel.com

Not a filesystem expert

(but having fun learning)!

What Is OpenGFS?

• Clustered Filesystem – What does *that* mean?
…. Many different things to different people.

• OpenGFS provides direct access to shared storage
media. No “middle man”.

OpenGFS Architecture

ogfs.o LinuxInter-node
support

Fs and
journal

g
l
o
c
k

VFS

BLK
I/O

Driver

Shared
StorageLock

module

Cluster
mgr

this node
Other node

Other node

FC, etc.LAN

What’s OpenGFS Good For?

• Probably best in read-intensive applications.

• Should also be good for different computers
writing into different directories.

• Might be bad for write-intensive apps sharing a
single file or directory among several computers.

• All of the above are untested hypotheses, based on
evolving understanding of architecture and
internals.

What enables shared access??

• #1 is Locking!!
– Resource groups for block allocation (exclusive).
– Inodes for reads (shared) / writes (exclusive).
– Several others for journal recovery, mount, flock, etc.

• Individual journals for each compute node.
– no interleaving of different nodes’ activities.
– easy contention-free write/read.
– easy node-specific recovery.

• Consistent representation of filesystem/journal
devices across all compute nodes.

What enhances sharing?

• Resource groups (block alloc/unalloc)
– block usage stats are distributed throughout the

filesystem; each resource group (not superblock) stores
its own block stats, along with a block usage bitmap.

– each computer node uses a unique resource group
within the filesystem for allocating blocks.

– 3 methods of changing resource group:
• Single – use it until it is full
• Round robin – use new one for each new directory
• Random – use new one for each new directory

– Reads and non-size-changing writes do not
use/access/lock resource group stats or bitmap.

What enhances sharing (cont)?

• One inode per block
– Filesystem Block (typ. 4k) is the finest grain

locking available (KISS)*.

– No lock contention among multiple inodes
(only one inode per block/lock).

– Locks use block # as ID, along with lock type.

* Keep it simple, stupid!

What has very little to do with
sharing, from FS perspective?

• Volume management
– OGFS (now) really doesn’t care how the filesystem is

comprised of various disks (external journals allow
OGFS to create journals on specific devices).

– OGFS self-detects filesystem expansion (not volume
expansion) or journal additions made by another node.

– No need for special hooks (ioctls, etc.) between
Volume Manager and OpenGFS.

• Cluster management
– Normal OGFS filesystem operations don’t care how

many, or which, nodes are in a cluster.
– The fs just needs to obtain a lock, it doesn’t care where

from (it relies on the lock manager for that).

What Was OpenGFS??

• *Everything* you might need to make a Clustered
filesystem:
– Filesystem code

– Journaling code

– Intra/Inter-node Locking code (g-lock/memexp)

– Cluster management code (memexp)

– Volume management code (pool)

• Much of this did not exist, or was not very mature,
when OGFS was written.

History

• Project at U. Minnessota 1995-1999
• Sistina open source 2000-2001
• Sourceforge project 2001-present

– Alan Cox, hch, et al set up Sourceforge site, grabbing
source from Compaq SSIC-Linux 0.5.1, August 2001.

– Ran out of time (weren’ t able to “solve the pool mess”).
 Project languished.

– Mid 2002, Brian Jackson and Dominik Vogt started
work. Solidified build system. Began documentation.

– 2003 has seen activity pick up a lot.

2003 Activity

• Solve “the pool mess”. Liberate OGFS from pool
VM, by adding external journals (Ben Cahill).

• OpenDLM lock module (Stan Wang).

• EVMS File System Interface Module (FSIM)
(Luciano Chavez)

• Block alloc enhancement (Dominik Vogt).

• Mmap support (Daniel Phillips).

• Documentation!! (Ben Cahill and others)

2003: Pool

• Myth that OGFS depended strongly on pool.
• Actually, relatively weak dependence: only at

filesystem creation time. Mkfs.ogfs needed to
know virtual device makeup in order to:
– Place specific journals on specific partitions. External

journals solve this problem.
– Support striping efficiently. We ignored this, but a

command line option to mkfs.ogfs could provide info.

• Now we can use virtually any volume manager (or
none at all if all cluster members expose devices
in consistent way). Seems solid.

2003: OpenDLM

• Memexp has one central lock storage server. If it
crashes, it’ s very bad. Also, has inefficient
load/store protocol. Need a Distributed Lock
Manager (DLM), with efficient messaging.

• G-lock supports plug-in locking protocol modules.
• Sourceforge OpenDLM was set up by OpenGFS

guys (Brian and Dominik). Avoids single point of
failure.

• We now have OpenDLM lock module for
OpenGFS, not production-ready, but there!

2003: EVMS

• Enterprise Volume Management System (EVMS),
central “control panel” for storage management.
– Virtual device (volume) composition, expansion.
– Filesystem creation, expansion, journal addition, etc.

• EVMS now cluster-aware, so propagates volume
management info/changes to all nodes.

• File-System Interface Module (FSIM) provides
the filesystem management interface, using
(mostly) pre-existing OGFS user space utils.
– OGFS doesn’ t care about *volume* expansion
– OGFS self detects *filesystem* expansion and new

journals, no need for notification from volume mgr

2003: Block Alloc & mmap

• Block alloc enhancement:
– AVL tree for resource group search.
– Recovery of excess dinode and metadata blocks.
– Code cleanup, comments.

• Clustered mmap:
– OpenGFS provided a good test bed for kernel support

of clustered mmap.
– Small patches to OGFS and kernel bridged a file

consistency gap (patch releases exclusive inode lock
after page table is updated).

2003: Documentation

• WHATIS-ogfs: Introductory material
• HOWTO-generic, HOWTO-nopool: Installation

with, and without, the (deprecated) “pool” volume
manager.

• HOWTO-evms: Setup of EVMS to provide a
filesystem device and an external journal device.

• HOWTO-debug: Use of OGFS internal debug
facilities.

• Comments in code (pretty barren, more to do)

2003: Documentation (cont)
• ogfs-* internals docs:

– On-disk layout: What’ s on disk, and more
– Pool: volume manager, research for “liberating” OGFS

from pool
– Locking: G-lock system, research for using OpenDLM

for OGFS, and using g-lock for ext3
– Memexp: memexp lock module, research for using

OpenDLM for OGFS, and using g-lock for ext3
– Block alloc: research for enhancing performance and

filespace usage, and fixing a panic.
– Ops: OS interface and big view of OpenGFS

operations
– Still need: Journaling (research for performance)

Future activity

• Performance suspects:
– Journaling
– Locking
– Internals

• Clusterize ext3?
– Separate glock from ogfs module

• Port to 2.5/2.6
• More documentation (inc. comments)!

Future: Performance

• OpenGFS performance is a bit lacking at present,
and we need to learn why.

• Recent (quick) experiment shows that journaling
is a performance bottleneck:
– rm takes as long, or longer, than untar of Linux tree
– OGFS journaling serializes flushes to disk
– Tweak OGFS journaling?
– Try Journaling Block Device (JBD)?

• Other suspects:
– Locking performance
– Overuse (?) of BKL

Future: “Clusterizing” ext3

• Well known/exercised/maintained code.
• Add locking (via g-lock interface?).
• Tweak ext3 journaling (JBD) and flushing to

provide good performance along with inter-node
file consistency (Stephen Tweedie has some
ideas).

• Individual journal for each node.
• Potential trouble spots:

– All block alloc stats stored in superblock (bottleneck)
– Multiple inodes per block (big problem, or not?)

More Info

• Opengfs.sourceforge.net
– Start with WHATIS-ogfs

• Overview

• CVS tree tour

• References (inc. other interesting filesystems)

