OpenGFS

Ben Cahill
Ben.m.cahill@intel.com
Not afilesystem expert
(but having fun learning)!

What Is OpenGFS?

o Clustered Filesystem — What does *that* mean?
.... Many different things to different people.

e OpenGFS provides direct access to shared storage
media. No “middle man”.

=

LAN

OpenGFS Architecture

this node

"""""""""""

———————————

"""""""""""""""""""""""

""""""""""

Shared
Stife

FC, etc.

What’s OpenGFS Good For?

Probably best in read-intensive applications.

Should also be good for different computers
writing into different directories.

Might be bad for write-intensive apps sharing a
single file or directory among several computers.

All of the above are untested hypotheses, based on
evolving understanding of architecture and
Internals.

What enables shared access??

« #11s Locking!!
— Resource groups for block allocation (exclusive).
— Inodes for reads (shared) / writes (exclusive).
— Several others for journal recovery, mount, flock, etc.

o Individual journals for each compute node.
— no interleaving of different nodes’ activities.

— easy contention-free write/read.
— easy node-specific recovery.

 Consistent representation of filesystem/journal
devices across all compute nodes.

What enhances sharing?

» Resource groups (block alloc/unalloc)

— block usage stats are distributed throughout the
filesystem; each resource group (not superblock) stores
Its own block stats, along with a block usage bitmap.

— each computer node uses a unique resource group
within the filesystem for allocating blocks.

— 3 methods of changing resource group:
e Single—useit until itisfull
* Round robin — use new one for each new directory
« Random — use new one for each new directory

— Reads and non-size-changing writes do not
use/access/lock resource group stats or bitmap.

What enhances sharing (cont)?

e Oneinode per block

— Filesystem Block (typ. 4k) isthe finest grain
locking available (KISS)*.

— No lock contention among multiple inodes
(only one inode per block/lock).

— Locks use block # as 1D, along with lock type.

* Keep it simple, stupid!

What has very little to do with
sharing, from FS perspective?

« Volume management

— OGFS (now) really doesn’t care how the filesystem is
comprised of various disks (external journals allow
OGFS to create journals on specific devices).

— OGFS self-detects filesystem expansion (not volume
expansion) or journal additions made by another node.

— No need for special hooks (ioctls, etc.) between
Volume Manager and OpenGFS.

 Cluster management

— Normal OGFS filesystem operations don’t care how
many, or which, nodes are in a cluster.

— The fs just needs to obtain a lock, it doesn’t care where
from (it relies on the lock manager for that).

What Was OpenGFS??

e *Everything* you might need to make a Clustered
filesystem:
— Filesystem code
— Journaling code
— Intra/lnter-node L ocking code (g-lock/memexp)
— Cluster management code (memexp)
— Volume management code (pool)

e Much of thisdid not exist, or was not very mature,
when OGFS was written.

History

* Project at U. Minnessota 1995-1999
o Sistina open source 2000-2001

« Sourceforge project 2001-present

— Alan Cox, hch, et al set up Sourceforge site, grabbing
source from Compaqg SSIC-Linux 0.5.1, August 2001.

— Ran out of time (weren’t able to “solve the pool mess”).
Project languished.

— Mid 2002, Brian Jackson and Dominik Vogt started
work. Solidified build system. Began documentation.

— 2003 has seen activity pick up a lot.

2003 Activity

Solve “the pool mess”. Liberate OGFS from pool
VM, by adding external journals (Ben Cahill).

OpenDLM lock module (Stan Wang).

EVMS File System Interface Module (FSIM)
(Luciano Chavez)

Block alloc enhancement (Dominik Vogt).
Mmap support (Daniel Phillips).
Documentation!! (Ben Cahill and others)

2003: Pool

o Myth that OGFS depended strongly on pool.

o Actually, relatively weak dependence: only at
filesystem creation time. Mkfs.ogfs needed to
know virtual device makeup in order to:

— Place specific journals on specific partitions. External
journals solve this problem.

— Support striping efficiently. We ignored this, but a
command line option to mkfs.ogfs could provide info.
* Now we can use virtually any volume manager (or
none at al if al cluster members expose devices
In consistent way). Seems solid.

2003: OpenDLM

Memexp has one central lock storage server. If it
crashes, it'svery bad. Also, has inefficient
load/store protocol. Need a Distributed Lock
Manager (DLM), with efficient messaging.
G-lock supports plug-in locking protocol modules.

Sourceforge OpenDLM was set up by OpenGFS
guys (Brian and Dominik). Avoids single point of
failure.

We now have OpenDLM lock module for
OpenGFS, not production-ready, but there!

2003: EVMS

« Enterprise Volume Management System (EVMS),
central “control panel” for storage management.
— Virtual device (volume) composition, expansion.
— Filesystem creation, expansion, journal addition, etc.

« EVMS now cluster-aware, so propagates volume
management info/changes to all nodes.

 File-System Interface Module (FSIM) provides
the filesystem management interface, using
(mostly) pre-existing OGFS user space utils.
— OGFS doesn’t care about *volume* expansion

— OGFS self detects *filesystem* expansion and new
journals, no need for notification from volume mgr

2003: Block Alloc & mmap

* Block alloc enhancement:
— AVL treefor resource group search.
— Recovery of excess dinode and metadata blocks.
— Code cleanup, comments.

e Clustered mmap:

— OpenGFS provided a good test bed for kernel support
of clustered mmap.

— Small patches to OGFS and kernel bridged afile
consistency gap (patch releases exclusive inode lock
after page table is updated).

2003: Documentation

WHATIS-ogfs: Introductory material

HOWTO-generic, HOWTO-nopool: Installation
with, and without, the (deprecated) “pool” volume
manager.

HOWTO-evms: Setup of EVMS to provide a
filesystem device and an external journal device.

HOWTO-debug: Use of OGFS internal debug
facilities.

Comments In code (pretty barren, more to do)

2003: Documentation (cont)

o« ogfs-* internals docs:
— On-disk layout: What's on disk, and more

— Pool: volume manager, research for “liberating” OGFS
from pool

— Locking: G-lock system, research for using OpenDLM
for OGFS, and using g-lock for ext3

— Memexp: memexp lock module, research for using
OpenDLM for OGFS, and using g-lock for ext3

— Block alloc: research for enhancing performance and
filespace usage, and fixing a panic.

— Ops: OS interface and big view of OpenGFS
operations

— Still need: Journaling (research for performance)

Future activity

Performance suspects:

— Journaling

— Locking

— Internals

Clusterize ext3?

— Separate glock from ogfs module

Port to 2.5/2.6
More documentation (Inc. comments)!

Future: Performance

OpenGFS performance is a bit lacking at present,
and we need to learn why.

Recent (quick) experiment shows that journaling
IS a performance bottleneck:

— rmtakes aslong, or longer, than untar of Linux tree
— OGFSjournaling serializes flushes to disk

— Tweak OGFS journaling?

— Try Journaling Block Device (JBD)?

Other suspects:

— Locking performance
— Overuse (?) of BKL

Future: “Clusterizing” ext3

Well known/exercised/maintained code.
Add locking (via g-lock interface?).

Tweak ext3 journaling (JBD) and flushing to
provide good performance along with inter-node
file consistency (Stephen Tweedie has some
Ideas).

Individual journal for each node.

Potential trouble spots:

— All block alloc stats stored in superblock (bottleneck)
— Multiple inodes per block (big problem, or not?)

More Info

* Opengfs.sourceforge.net

— Start with WHATIS-ogfs

o Overview
o« CVStreetour
» References (inc. other interesting filesystems)

